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with corner eddies 
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The steady rotational flow of an inviscid fluid in a two-dimensional channel or a 
circular tube toward a sink is treated. The velocity distribution at  infinity is 
approximated by a cosine curve (which is nearly parabolic) for the two-dimen- 
sional case, and is taken as exactly parabolic for the axisymmetric case. The 
dependence of vorticity on stream-function is assumed to be everywhere the 
same as it is for streamlines coming from infinity upstream. The resulting linear 
equations of motion are solved exactly. The solutions show the rather unusual 
features of separating streamlines and regions of closed flow (corner eddies). 

It is well known that, for a viscous fluid flowing in a channel or pipe with an 
abrupt contraction, eddies occur at  the corners immediately preceding that 
contraction. The occurrence of such eddies, and their shape and size, are probably 
influenced strongly by the rotationality of the flow far upstream, and the inten- 
tion in this note is to show two simple solutions which throw a little light on this 
influence. Since we are interested here in the effect of upstream vorticity only, the 
direct effect of viscosity will be ignored, although the distribution of vorticity far 
upstream will be assumed to be the same (or nearly so) as it would be for a fluid with 
viscosity. The particular flow to be studied is that of an inviscid homogeneous 
fluid in a long channel or pipe toward a sink in the middle of a wall across the 
channel. Under these assumptions, exact solutions of the governing differential 
systems (assumed to apply to the entire region of flow) will be seen to show the 
existence of separating streamlines and regions of closed flow or corner eddies. 
(For another instance of corner eddies, in stratified flow, see Yih (1958).) No 
singular surfaces occur in the flow (nor could they, in view of the assumption 
made about the dependence of vorticity on stream-function), and the solutions 
to be given are unlikely to represent the corresponding flow of a real fluid at large 
Reynolds number; this is part of the penalty for neglecting viscous forces 
entirely. 

Two-dimensional flow into a line sink 
I n  this section we consider steady two-dimensional flow in a long channel with 

half-width equal to unity terminating in a wall with a symmetrically placed line 
sink. The origin of a system of Cartesian co-ordinates is taken at  the sink, with 
the centreline of the channel as the x-axis (see figure 1). 
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If $ is Lagrange’s stream function, the equation governing steady two- 
dimensional flow of an inviscid fluid is 

where - f (@) represents the vorticity and depends on $ alone. The velocity 
distribution far upstream from the sink should be parabolic if it is to be made the 
same as that for the laminar flow of a viscous fluid in a long channel. However, 
a parabolic distribution of the upstream velocity would make equation (1)  non- 
linear and preclude the possibility of a simple solution. Since we are looking here 
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FIGURE 1. Pattern of two-dimensional flow into a sink. 

for the effect of non-uniformity of the upstream velocity, a cosine distribution, 
which is nearly parabolic and makes equation ( 1 )  linear, can usefully be assumed. 
If the upstream velocity U is measured in terms of the centreline velocity U,,,, 
the dimensionless upstream velocity is then 

u = tJ/Unlax = cos iny, (2) 

which vanishes at  the walls (y = _+ 1). The corresponding (dimensionless) stream 
function far upstream is then 

@ = f cos +nydy = (2/n) sin t r y ,  
0 

and the vorticity is - Vz$ = in sin 4n-y = &+$. 

(3) 

(4) 

Thus the function f (@) is equal to - &7r2@ not only far upstream but everywhere, 
and equation (1)  becomes 

The boundary conditions on @ are 

(i) $ --f (2/n)sin+ny as x + -03, 

(ii) $ = f ( 2 / n )  for y = A 1, 
(iii) $ = T ( 2 / n )  for y $ O  and x = 0. 

V Z $ = - L  2 ( 5 )  477 @* 



38 Chia-Shun Yih 

Solution of equation ( 5 )  by the method of separation of variables yields 

m 

@ = ( ~ / z - )  sin in-y + c Cn sin nz-y exp ((n2 - $)* m}, (6) 
n=l 

which satisfies (i) and (ii), and is an odd function of y. It is therefore only necessary 
to determine the C, to satisfy 

00 

2 C,sinnmy = (2/7r)(l--sin&ny) (0 < y  < I),  (7) 
n=l 

which yields 

Equations (6) and (8) constitute the solution. The flow pattern for half of the 
channel is shown in figure 1, in which the corner eddy is evident. The point of 
separation is at infinity upstream. 

It should be noted that, since the flow in the eddies does not originate at infinity, 
there is no a priori reason why equations (4) and ( 5 )  should govern the flow in the 
eddies. The details of the eddy flow may be significantly different from those given 
by equation ( 6 )  (see Batchelor 1956), and the solution ( 6 )  is likely to be valid for 
a viscous fluid at  high Reynolds number only for the region outside the corner 
eddies. 

Axisymmetric flow into a point sink 
In  this section we consider steady axisymmetric flow in a long circular pipe 

with unit radius terminating in a wall with a point sink at the centre. The point 
sink will be taken to be the origin of a set of cylindrical co-ordinates, with the 
centreline of the pipe as the z-axis and with the radial distance therefrom denoted 
by r (see figure 2). 

If @ is now Stokes's stream function, steady axisymmetric flow of an inviscid 
fluid is governed by the equation 

where rP($) represents the vorticity and F depends on @ alone (Lamb 1945). The 
velocity distribution far upstream can here be assumed to be parabolic, as for the 
laminar flow of a viscous fluid in a long pipe, so that the dimensionless velocity far 
upstream is 

w = WjW,,, = r2 -  1. (10) 

The corresponding dimensionless stream function far upstream is 

$ = +r2-$r4, (11) 

and the vorticity there is - Br. Thus the function F is constant ( - 2) far upstream 
and hence everywhere, and the equation governing the flow everywhere is 
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The boundary conditions are 

(i) $+&rZ-&r4 as z+m,  
(ii) $ = & for r = 1, 
(iii) $ = Q for z = 0 (0 < r < 1). 

Solution of equation (12) by the separation of variables yields 
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m 
@ = +r2 - $r4 + 2; C,rJ,(h,r) exp ( - Anz) (13) 

n=l  

which satisfies (i) and (ii) if An are the zeros of J,(h). The coefficients Cn are 
determined by the condition (iii), and we find 

c = -  2hnJi(h,) 1 ( 1 + 5 p )  

2 
e 

FIGURE 2. Pattern of axisymmetric flow into a sink. 

by multiplying equation (13) (with z = 0 )  by Jl(Amr), integrating between 0 and 1, 
and using the orthogonality of the functions Jl(Anr). The detailed calculation for 
C, involves integrations by parts and some known relationships for J, and J1, and 
is omitted because it is straightforward. Equations (13) and (14) then constitute 
the solution. 

The flow pattern for half of the meridianal plane is shown in figure 2, in which 
the ring-shaped corner eddy is evident. The point of separation is again at infinity. 
Again, the solution is strictly applicable to a fluid of small viscosity only outside 
the region of the ring eddy; equation (12) has been assumed to be valid for the 
whole field of flow, but the solution shows a region of closed flow where the 
vorticity is not determined by conditions far upstream and there is no a priori 
reason (other than convenience) why equation (12) should be applicable. We 
note that equation (13) does state that the vorticity is proportional to r every- 
where, and therefore in the eddy in particular, which coincides with the exact 
result for flow with closed streamlines at  high Reynolds number (Batchelor 
1956); however, the constant of proportionality is also fixed by equation (12) and 
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is unlikely to have here the value that would be required for a fluid with non-zero 
viscosity. As in the two-dimensional case, the flow shown in figure 2 is free from 
singular surfaces. 
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